Activating mutations in the KCNJ11 gene encoding the ATP-sensitive K+ channel subunit Kir6.2 are rare in clinically defined type 1 diabetes diagnosed before 2 years.

نویسندگان

  • Emma L Edghill
  • Anna L Gloyn
  • Kathleen M Gillespie
  • A Paul Lambert
  • Neil T Raymond
  • Peter G Swift
  • Sian Ellard
  • Edwin A M Gale
  • Andrew T Hattersley
چکیده

We have recently shown that permanent neonatal diabetes can be caused by activating mutations in KCNJ11 that encode the Kir6.2 subunit of the beta-cell ATP-sensitive K(+) channel. Some of these patients were diagnosed after 3 months of age and presented with ketoacidosis and marked hyperglycemia, which could have been diagnosed as type 1 diabetes. We hypothesized that KCNJ11 mutations could present clinically as type 1 diabetes. We screened the KCNJ11 gene for mutations in 77 U.K. type 1 diabetic subjects diagnosed under the age of 2 years. One patient was found to be heterozygous for the missense mutation R201C. She had low birth weight, was diagnosed at 5 weeks, and did not have a high risk predisposing HLA genotype. A novel variant, R176C, was identified in one diabetic subject but did not cosegregate with diabetes within the family. In conclusion, we have shown that heterozygous activating mutations in the KCNJ11 gene are a rare cause of clinically defined type 1 diabetes diagnosed before 2 years. Although activating KCNJ11 mutations are rare in patients diagnosed with type 1 diabetes, the identification of a KCNJ11 mutation may have important treatment implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical and Molecular Genetic Analysis of Iranian Patients with Neonatal Diabetes demonstrating Mutations in KCNJ11 gene

Abstract We screened the KCNJ11 gene from 35 individuals clinically diagnosed with type 1 diabetes mellitus under the age of 6 months in 3 years duration. Six different heterozygous missense mutations were found in 7 of the 35 probands, which accounted for 20% of all individuals. A novel mutation W68R (No Locus, GU170814; 2009) was identified in the kir6.2, the pore-forming subunit of the KATP ...

متن کامل

Sulfonylurea Therapy in Two Korean Patients with Insulin-treated Neonatal Diabetes due to Heterozygous Mutations of the KCNJ11 Gene Encoding Kir6.2

Permanent neonatal diabetes (PND) is a rare form of diabetes characterized by insulin-requiring hyperglycemia diagnosed within the first three months of life. In most cases, the causes are not known. Recently, mutations in the KCNJ11 gene encoding the Kir6.2 subunit of the ATP-sensitive K+ channel have been described in patients with PND. We report the first two Korean cases with PND due to a l...

متن کامل

Relapsing diabetes can result from moderately activating mutations in KCNJ11.

Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (K(ATP)), are the commonest cause of permanent neonatal ...

متن کامل

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium (KATP) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonyl...

متن کامل

Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes.

BACKGROUND Patients with permanent neonatal diabetes usually present within the first three months of life and require insulin treatment. In most, the cause is unknown. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose-stimulated insulin secretion from the pancreatic beta cells, we hypothesized that activating mutations in the gene encoding the Kir6.2 subunit of this channel (KC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 53 11  شماره 

صفحات  -

تاریخ انتشار 2004